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Abstract: This article reveals an analysis of the quadratic systems that hold multiparametric families therefore,
in the first instance the quadratic systems are identified and classified in order to facilitate their study and then
the stability of the critical points in the finite plane, its bifurcations, stable manifold and lastly, the stability of the
critical points in the infinite plane, afterwards the phase portraits resulting from the analysis, moreover Algebraic
aspects are also included such that hamiltonian cases and Galois differential groupes. It should be noted that these
families have associated oscillating type problems given their similarity to the Liénard equations.
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1 Introduction
Systems of differential equations are known to ex­
press a number of mathematical, physical and engi­
neering situations. In particular, this article is based
about the study of all quadratic multiparametric sub­
families associated with the next family: Given the
family with a, b, c,m, k ∈ R.{
ẋ = y
ẏ =

(
αxm+k−1 + βxm−k−1

)
y − γx2m−2k−1

(1.1)
We can find antecedents of the algebraic and

qualitative studies of this family in [1, 2, 3]. In
general, we can see qualitative studies about planar
systems in [4], furthermore antecedents of applied
bifurcations study in [5]. In the present work, we
take Proposition 4.1, pag 12, in [2, 3] which the goal
of analyze each quadratic subfamily equivalently
to (1.1). Considering the constants a,b, c, and
s, p, r ∈ Z+. Then, we analyze different cases to
determine quadratic systems attached to (1.1) taking
into account the regions in the space determined by
the for the different parameters.

For the study of the quadratic multiparametric
families described by (1.1) where we use different
topics studied in [6, 12, 13] and [7]. Then, we find
the critical points associated with each quadratic fam­
ily and analyzing their stability in both the finite and
infinite planes, also we present a deeper study study
determined by regions to see the changes in stability

of the critical points and from here analyze bifurca­
tions presented in some families.
Definition 1.1 (Saddle­focus­saddle Bifurcations).
We will call a Bifurcations saddle­focus­saddle is
when a parameter change it implies that two critical
points, one saddle, collapse in a focus and later they
recover its original stability.

2 Conditions For The Problem.
The following section allows us to identify the
quadratic cases associated to (1.1).

2.1 Reduction to 5 Families
The next proposition is a particular case of proposi­
tion 4.1 in [3], we inly consider the quadratic cases.
Proposition 2.1. Let a, b, c,m, k ∈ R y s, p, r ∈ Z+.
Quadratic systems associated with each subfamily of
(1.1) are equivalently to the following families:

I:
{
ẋ = y
ẏ = −cx2 (2.1)

II:
{
ẋ = y
ẏ = 2byx

(2.2)

III:
{
ẋ = y
ẏ = 2ayx

(2.3)

IV:

{
ẋ = y

ẏ = a
(
p+4
2

)
y − 3

2a
2x− cx2

(2.4)
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V:
{
ẋ = y
ẏ = b

(
s+4
2

)
y − 3

2bx− cx2
(2.5)

Proof. We analyze each subfamily of the system
(1.1), where We observe the different possibilities for
the constants a, b and c, are equal to 0. Some of cases
are:

I. For a = 0 , b = 0 and c 6= 0. If s = 0, then
p = 1. If s = 1, then p = 0.

II. For a 6= 0 , b 6= 0 and c 6= 0. We observed that
deg(Q) = max {2p+ 1, 2s+ 1, s+ p+ 1}.
Case 1. If deg(Q) = 2p+ 1, then 2p+ 1 = 2 so
p = 1

2 /∈ Z+.
Case 2. If deg(Q) = 2s+ 1, then 2s+ 1 = 2 so
s = 1

2 /∈ Z+.
Case 3. If deg(Q) = s + p + 1, then we return
to reasoning in the family I, so s = 0 then p = 1,
but we have that 2p+ 1 = 3 and this case would
be cubic. Same for p = 0 and s = 1.Therefore,
this family does not have quadratic cases.

3 Finite Plane
Proposition 3.1. (0, 0) is a cusp of family (2.1) .

Proof. The critical point associated with the sys­
tem (2.1) is (0, 0). The eigenvalues associate to
the Jacobian matrix DF (0, 0) are λ2 = λ2 = 0.
Then, according to the Theorem ([7, pág 116]), where
A(x, y) = 0 and y = 0, on the other hand We have
to B(x, y) = −cx2,we get that F (x) = −cx2 and
G(x) = 0. Therefore the origin of the system (2.1) is
a cusp.

Proposition 3.2. The system (2.2) have infinite crit­
ical points.

Proof. (x, 0) which is a line of critical points associ­
ated with the system (2.2). We see the solution:

y = bx2 + k, where k is a constant.

Proposition 3.3. The system (2.3) have infinite crit­
ical points.

Proof. (x, 0) which is a line of critical points associ­
ated with the system (2.3). We see the solution:

y = ax2 + k, where k is a constant.

Proposition 3.4. a) The point (0, 0) is an stable
node if a < 0 and unstable if a > 0, and (−3a2

2c , 0)
is a saddle.

b) If p = 0, (0, 0) is an stable focus if a < 0 and
unstable if a > 0, and (−3a2

2c , 0) is a saddle.

Proof. Critical points associatedwith the system (2.4)
are: (0, 0) and (−3a2

2c , 0).
Let d = a(p+ 4)

a. For the Jacobian matrix DF (0, 0), eigenvalues
are:
λ1 = 1

4

[
d+

√
d2 − 24a2

]
and λ2 =

1
4

[
d−

√
d2 − 24a2

]
. According to the Theorem

([7, pág 71]) we see that λ1λ2 > 0 therefore
(0, 0) is an stable node if a < 0 and unstable if
a > 0.
Now, for the Jacobian matrix DF (−3a2

2c , 0),
eigenvalues are:
λ1 =

1

4

[
+
√
d2 + 24a2

]
y λ1 =

1

4

[
d−

√
d2 + 24a2

]
. According to the Theo­

rem ([7, pág 71]) we see that λ1λ2 < 0, then
(−3a2

2c , 0) is a saddle.

b. If p = 0, for the Jacobian matrixDF (0, 0) eigen­
values are:
λ1 =

a

2
(2 + i

√
2) and λ2 =

a

2
(2 − i

√
2). Ac­

cording to the Theorem ([7, pág 71]) we see that
(0, 0) is an stable focus if a < 0 and unstable if
a > 0.
Now, for the Jacobian matrix DF (−3a2

2c , 0),
eigenvalues are:
λ1 =

a

4

[
4 + 2

√
10
]
and λ1 =

a

4

[
4− 2

√
10
]
.

According to the Theorem ([7, pág 71]) we see
that λ1λ2 < 0, then (−3a2

2c , 0) is a saddle.

Before looking at the following proposition, We
define the following regions:

R1 =
{
(b, c, d) ∈ R3|d2 − 24b > 0

}
R2 =

{
(b, c, d) ∈ R3|d2 − 24b = 0

}
R3 =

{
(b, c, d) ∈ R3|d2 − 24b < 0, c > 0

}
R4 =

{
(b, 0, d) ∈ R3|d2 − 24b > 0

}
R5 =

{
(b, 0, d) ∈ R3|d2 − 24b = 0

}
R6 =

{
(b, 0, d) ∈ R3|d2 − 24b < 0

}
R7 =

{
(0, c, 0) ∈ R3|c > 0

}
R8 =

{
(b, c, d) ∈ R3|c < 0

}
We note that R3 =

∪8
i=1Ri. Now in R3 and R4

we consider the following subsets:

E1 =
{
(b, c, d) ∈ R3|d2 − 24b < 0, d > 0, c > 0

}
E2 =

{
(b, c, d) ∈ R3|d2 − 24b < 0, d < 0, c > 0

}
E3 =

{
(b, c, d) ∈ R3|d2 + 24b < 0, d > 0, c > 0

}
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E4 =
{
(b, c, d) ∈ R3|d2 − 24b < 0, d < 0, c > 0

}
E5 =

{
(b, c, d) ∈ R3|d2 − 24b < 0, d > 0, c < 0

}
E6 =

{
(b, c, d) ∈ R3|d2 − 24b < 0, d < 0, c < 0

}
E7 =

{
(b, c, d) ∈ R3|d2 + 24b < 0, d > 0, c < 0

}
E8 =

{
(b, c, d) ∈ R3|d2 − 24b < 0, d < 0, c < 0

}
E9 =

{
(b, c, d) ∈ R3|d2 − 24b > 0, d > 0, c > 0

}
E10 =

{
(b, c, d) ∈ R3|d2 − 24b > 0, d < 0, c > 0

}
E11 =

{
(b, c, d) ∈ R3|d2 − 24b > 0, d < 0, c < 0

}
E12 =

{
(b, c, d) ∈ R3|d2 − 24b > 0, d > 0c < 0

}
Proposition 3.5. Let the family (2.5) with (b, c, d) ∈
R3, then:

a) If (b, c, d) ∈ R1 and b > 0 then the point (0, 0) is
unstable node and the point (−3b

2c , 0) is a saddle.
if b < 0 then the point (0, 0) is a saddle and the
point (−3b

2c , 0) is stable node.

b) If (b, c, d) ∈ R2 and b > 0, then the critical point
(0, 0) is a unstable node and the critical point
(−3b

2c , 0) is saddle.

c) If (b, c, d) ∈ R3 and b > 0 then the point (0, 0)
is stable focus and the point (−3b

2c , 0) is a saddle.
If b < 0 then point (0, 0) is a unstable focus and
the point (−3b

2c , 0) is a unstable node.

Proof. Let d = b(s+ 4), so critical points associated
with the system (2.5) are: (0, 0) and (−3b

2c , 0). For the
Jacobian matrix DF (0, 0), the eigenvalues are:

λ1 =
1
4

[
d+

√
d2 − 24b

]
and

λ2 =
1
4

[
d−

√
d2 − 24b

]
.

Now, for DF (−3b
2c , 0), we have the eigenvalues:

λ1 =
1
4

[
d+

√
d2 + 24b

]
and

λ2 =
1
4

[
d−

√
d2 + 24b

]
.

a. If (b, c, d) ∈ R1 that is d2 − 24b > 0, for (0, 0)
We see that λ1λ2 = −3b

2 and λ1 > 0, then ac­
cording to the Theorem ([7, pág 71]) the critical
point (0, 0) is unstable node if b > 0 and a saddle
if b < 0.
Now, for (−3b

2c , 0), we have that d
2 + 24b > 48b,

then:

1. If b > 0, According to the Theorem ([7, pág
71]) We see that λ1λ2 = −3b

2 , and b > 0

then (−3b
2c , 0) is a saddle. If b < 0, λ2 < 0,

then stable node.
2. If b < 0 and d2 + 24b ∈ [48b, 0), then the

critical point (−3b
2c , 0) is stable focus.

3. If b < 0 and d2 + 24b ≥ 0, then the critical
point (−3b

2c , 0) if stable node.

b. If (b, c, d) ∈ R2 that is d2 − 24b = 0 this leans
to b ≥ 0 for DF (0, 0) λ1 = λ2 = d

4 , if b > 0
then the critical point is unstable node. We note
that if b = 0, then this corresponding to (2.1).
Now, if b > 0 that is d2 − 24b > 0, Furthermore
λ1λ2 = −3b

2 according to the Theorem ([7, pág
71]) the critical point (−3b

2c , 0) is saddle.

c. If (b, c, d) ∈ R3, that is d2 − 24b < 0 then b >
0. For DF (0, 0) eigenvalues are: λ1 = 1

4(d +

i
√
24b− d2) and λ2 = 1

4(d− i
√
24b− d2), then

according to the Theorem ([7, pág 71]), (0, 0) is a
focus unstable. Now, for b > 0We see that d2 +
24b > 0, that is for DF (−3b

2c , 0), we have that
λ1,2 ∈ R. So, λ1λ2 = −3b

2 , so According to the
Theorem ([7, pág 71]) we have that the critical
point (−3b

2c , 0) is a saddle.

Proposition 3.6. Given the family (2.5) with c = 0,
then:

a) If (b, 0, d) ∈ R4 and b > 0, then the critical point
(0, 0) is a saddle. If b < 0, then the critical point
(0, 0) is a stable node.

b) If (b, 0, d) ∈ R5 and b > 0, then the critical point
(0, 0) is a unstable node.

c) If (b, 0, d) ∈ R6 and b > 0, then the critical point
(0, 0) is a unstable focus. If b < 0, then the criti­
cal point (0, 0) is a stable focus.

Proof. With c = 0, the family (2.5) have the form:{
ẋ = y
ẏ = d

2y −
3
2bx

(3.1)

Here, we see that the only critical point associated
with the family (3.1) is (0, 0) then, for the Jacobian
matrix DF (0, 0) the eigenvalues are:
λ1 = 1

4 [d +
√
d2 − 24b] and λ2 = 1

4 [d −√
d2 − 24b].

a. If (b, 0, d) ∈ R4 that is d2 − 24b > 0, we have
that λ1λ2 = −3b

2 , then if b > 0 according to the
Theorem ([7, pág 71]) the critical point (0, 0) is
a saddle and if b < 0 and λ1 < 0 then the critical
point (0, 0) is a stable node.

b. If (b, 0, d) ∈ R5 that is d2 − 24b = 0, we have
that λ1λ2 = d

4 , then according to the Theorem
([7, pág 71]) the critical point (0, 0) is a unstable
node.
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c. If (b, 0, d) ∈ R6 that is d2 − 24b < 0, we
have that λ1 = 1

4(d + i
√
24b− d2) and λ2 =

1
4(d − i

√
24b− d2), then if b > 0 according to

the Theorem ([7, pág 71]) the critical point (0, 0)
is a unstable focus and if b < 0 and λ1 < 0 then
the critical point (0, 0) is a stable focus.

Now, We will look the stable manifold for the
associated systems.

Proposition 3.7. The stable manifold associated with
the system (2.4) at the point (−3a2

2c , 0) is:

S : y =
c(x+ 3a2

2c
)2

(v−w)(v−2w)

Proof. Let is observe the stability of the system (2.4)
in the point (−3a2

2c , 0):
Let is look at the eigenvalues in the Jacobian matrix
of the system (2.4) DF (−3a2

2c,0 ), are
w = λ1 = 1

4 [d +
√
d2 + 24a2] and v = λ2 =

1
4 [d−

√
d2 + 24a2].

that is, B(x) = C−1AC =

[
w 0
0 v

]
, b =

[
b1

0

]
F (x) =

[
0

−cx2
]
, G(x) =

cx2

v − w

[
1
−1

]
,

U(t) =

[
ewt 0

0 0

]
,V (t) =

[
0 0

0 evt

]
,

Then,

u(0)(t, b) = 0, u(1)(t, b) =

[
ewtb1
0

]

u(2)(t, b) =

[
ewtb1 +

b21ce
2wt[ewt−1]
w(v−w)

b21ce
2wt

(v−w)(v−2w)

]
Therefore, We can approximate by ψ2(b1) = b1,
therefore the stable and unstable manifold are:

S : y =
c(x+ 3a2

2c
)2

(v−w)(v−2w) U : x+ 3a2

2c = 2cy2

(v−w)((v−2w)

Proposition 3.8. For the system (2.5) We have that:

a) If (b, c, d) ∈ R1 and b < 0, stable manifold at the
point (0, 0) is:

S : y = cx2

(v−w)(v−2w)

b) If (b, c, d) ∈ {(x, y, z)/x > 0, y 6= 0}, then sta­
ble manifold at the point (−3b

2c , 0) is:

S : y =
c(x+ 3b

2c
)2

(v−w)(v−2w)

Proof. a) Let is observe the stability of the system
(2.5) for b < 0 at the point (0, 0):
Let is observe the stability of the system (2.5) in the
point (0, 0). Let, w = λ1 = 1

4 [d+
√
d2 − 24b] and

v = λ2 =
1
4 [d−

√
d2 − 24b].

That is, B(x) = C−1AC =

[
w 0
0 v

]
, a =

[
a1

0

]
F (x) =

[
0

−cx2
]
, G(x) =

cx2

v − w

[
1
−1

]

U(t) =

[
ewt 0

0 0

]
, V (t) =

[
0 0

0 evt

]
,

then,

u(0)(t, a) = 0, u(1)(t, a) =

[
ewta1
0

]
u(2)(t, a) =

[
ewta1 +

a2
1ce

2wt[ewt−1]
w(v−w)

a2
1ce

2wt

(v−w)(v−2w)

]
Therefore, We can approximate by ψ2(a1) = a1,

therefore the stable manifold can be approximated by,
respectively like x→ 0:

S : y = cx2

(v−w)(v−2w) , U : x = 2cy2

(v−w)((v−2w) .

b)Now we will observe the stability of the system
(2.5) at the point (−3b

2c , 0), when b > 0:
The eigenvalues of the jacobian matrix DF (−3b

2c , 0)

are: w = λ1 = 1
4 [d +

√
d2 + 24b] and

v = λ2 =
1
4 [d−

√
d2 + 24b].

So, B(x) = C−1AC =

[
w 0
0 v

]
, a =

[
a1

0

]
F (x) =

[
0

−cx2
]
, G(x) =

cx2

v − w

[
1
−1

]

U(t) =

[
ewt 0

0 0

]
, V (t) =

[
0 0

0 evt

]
,

then,

u(0)(t, a) = 0, u(1)(t, a) =

[
ewta1
0

]
u(2)(t, a) =

[
ewta1 +

a2
1ce

2wt[ewt−1]
w(v−w)

a2
1ce

2wt

(v−w)(v−2w)

]
So, we can approximate by ψ2(a1) = a1, therefore
the stable manifold and unstable manifold can be ap­
proximated by

S : y =
c(x+ 3b

2c
)2

(v−w)(v−2w) , U : x+ 3b
2c = 2cy2

(v−w)((v−2w)
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Like x→ 0.

4 Bifurcations
In this section we will analyze the study of the bifur­
cations of family (2.5)

Proposition 4.1. Let setsR7 andR8 are transcritical
bifurcations for the system (2.5)

Proof. Let P1 : (0, 0) and P2 : (3b2c , 0) of proposition
(4.5). If (b, c, d) ∈ E3 then P1 a saddle and P2 is a
unstable focus, when (b, c, d) ∈ R7, P1 and P2, they
collapse on one critical point which point is a cusp.
So, when (b, c, d) ∈ E2 then P1 a unstable focus and
P2 is a saddle. Similarly, the same behavior is ob­
served when (b, c, d) ∈ E2, then (b, c, d) ∈ R7 and
finally (b, c, d) ∈ E4.
Now, Let P1 : (0, 0) and P2 : (3b2c , 0) of proposition
(4.5). If (b, c, d) ∈ E4 then P1 a saddle and P2 is
a stable focus, when (b, c, d) ∈ R8, P1 and P2, they
collapse on one critical point which point is a cusp.
So, when (b, c, d) ∈ E1 then P1 a stable focus and P2

is a saddle. Similarly, the same behavior is observed
when (b, c, d) ∈ E1, then (b, c, d) ∈ R8 and finally
(b, c, d) ∈ E3.
Therefore, sets R7 and R8 are transcritical bifurca­
tions for the system (2.5)

Proposition 4.2. A set {(b, 0, d)|d2 − 24b < 0} is a
bifurcations saddle­focus­saddle for the system (2.5).

Proof. For proposition (4.5), if (b, c, d) ∈ E1, the
point P1 is a stable focus and P2 is a saddle. Now,
when (b, c, d) ∈

{
(b, 0, d)|d2 − 24b < 0, d > 0

}
for

proposition (3),P1 andP2 they collapse in an unstable
focus when (b, c, d) goes the set E5, appear again P1

andP2 like stable focus and a saddle respectively.

Proposition 4.3. A set {(b, 0, d)|d2 − 24b < 0} is a
bifurcations saddle­focus­saddle for the system (2.5).

Proof. For proposition (4.5), if (b, c, d) ∈ E2, the
point P1 is a unstable focus and P2 is a saddle. Now,
when (b, c, d) ∈

{
(b, 0, d)|d2 − 24b < 0, d < 0

}
for

proposition (3), P1 and P2 they collapse in an sta­
ble focus when (b, c, d) goes the set E6, appear again
P1 and P2 like unstable focus and a saddle respec­
tively.

Proposition 4.4. Let sets E9 and E10 are local bifur­
cations for the system (2.5)

Proof. Let P1 : (0, 0) of proposition (4.5). If
(b, c, d) ∈ E9 then P1 is a stable node. Now, when
(b, c, d) ∈ E10 the point P1 is a unstable node. There­
fore, regionsE9 andE10 are local bifurcations for the
system (2.5)

Proposition 4.5. Let sets E11 and E12 are local bi­
furcations for the system (2.5)

Proof. Let P2 : (3b2c , 0) of proposition (4.5). If
(b, c, d) ∈ E12 then P2 is a unstable node. Now, when
(b, c, d) ∈ E11 the point P2 is a stable node. There­
fore, regions E11 and E12 are local bifurcations for
the system (2.5)

Figure 1: (2.5), c > 0.

Figure 2: (2.5), c = 0.

Figure 3: (2.5), c < 0.

5 Infinite Plane
In the Chart U1 the associated system for the families
2.1, 2.2, 2.3, 2.4 and 2.5 respectively are:{

u̇ = −u2v − c
v̇ = −uv2 (5.1)
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Figure 4: (2.5), Subsets of the space.

{
u̇ = −u2v + 2b
v̇ = −uv2 (5.2)

{
u̇ = −u2v + 2a
v̇ = −uv2 (5.3)

{
u̇ = −u2v + duv

2 − 3a2v
2 − c

v̇ = −uv2 (5.4)

{
u̇ = −u2v + duv

2 − 3bv
2 − c

v̇ = −uv2 (5.5)

The previous systems have not critical points at
infinite plane.

In the Chart U2 the associated system 2.1:{
u̇ = v + cu3

v̇ = −cu2v (5.6)

Proposition 5.1. The point (0, 0) is an stable node if
c < 0 and unstable if c > 0.

Proof. The critical points associated with the sys­
tem (5.6) is P : (0, 0). The eigenvalues associate
to Jacobian matrix DF (0, 0) are We see that λ1 =
λ2 = 0. According to the Theorem ([7, pág 116]), let
v+A(u, v) = 0 a solution of v+A(u, v) = 0, where
A(u, v) = cu3 then v = −cu3, also we have that
B(u, v) = cu2v, soF (u) = −c2u5 andG(x) = 4cu2

thenm = 5, n = 2, a = −c2, b = 4c andm = 2n+1,
furthermore b2+4a(n+1) ≥ 0 . Therefore the origin
of the system (5.6) in infinite plane is an stable node
if c < 0 and unstable if c > 0 (5a).

In the Chart U2 the associated system (2.2).{
u̇ = v − 2bu2

v̇ = −2buv
(5.7)

Proposition 5.2. The point (0, 0) have one hyper­
bolic and one elliptic sector.

Proof. The critical points associated with the system
(5.7) is P : (0, 0). The eigenvalues associate to the
Jacobian matrixDF (0, 0) are, λ1 = λ2 = 0. Accord­
ing to the Theorem ([7, pág 116]), let v+A(u, v) = 0
a solution of v + A(u, v) = 0, where A(u, v) =
−2bu2 then v = −2bu2, also we have that B(u, v) =
−2buv, so F (u) = −4b2u3 and G(x) = −6bu then
m = 2n+1 and b2+4a(n+1). Therefore the origin
of the system (5.7) in infinite plane have one hyper­
bolic and one elliptic sector (5b).

In the Chart U2 the associated system (2.3).{
u̇ = v − 2au2

v̇ = −2auv
(5.8)

Proposition 5.3. The point (0, 0) have one hyper­
bolic and one elliptic sector.

Proof. The critical points associated with the system
(5.8) is P : (0, 0).The eigenvalues associate to the Ja­
cobian matrix DF (0, 0) are, λ1 = λ2 = 0. Accord­
ing to the Theorem ([7, pág 116]), let v+A(u, v) = 0
a solution of v + A(u, v) = 0, where A(u, v) =
−2au2 then v = −2au2, also we have thatB(u, v) =
−2auv, so F (u) = −4a2u3 y G(x) = −6au then
m = 2n+1 and b2+4a(n+1). Therefore the origin
of the system (5.8) in infinite plane have one hyper­
bolic and one elliptic sector (6a).

In the Chart U2 the associated system to (2.4) is:{
u̇ = v − duv

2 + 3
2a

2u2v + cu3

v̇ = −dv2

2 + 3
2a

2uv2 + cu2v
(5.9)

Proposition 5.4. The point (0, 0) is an stable node if
c < 0 and unstable if c > 0.

Proof. The critical points associated with the system
(5.9) is P : (0, 0).The eigenvalues associate to the Ja­
cobian matrix DF (0, 0) are, λ1 = λ2 = 0. Accord­
ing to the Theorem (([7, pág 116])), Let v = f(u)
a solution of v + A(u, v) = 0 where v = f(u) =
−cu3 + . . . an approximation of the Taylor series so­
lution, furthermoreB(u, v) = −dv2

2 + 3
2a

2uv2+cu2v,
then F (u) = −c2u5 + . . . and G(u) = cu2 + . . ., so
m = 5,n = 2,b = 4c and a = −c2. Therefore the
origin in the infinite plane is an stable node if c < 0
and unstable if c > 0 (6b).

In the Chart U2 the associated system to (2.5) is:{
u̇ = v − duv

2 + 3
2bu

2v + cu3

v̇ = −dv2

2 + 3
2buv

2 + cu2v
(5.10)

Proposition 5.5. The point (0, 0) is stable node if
c < 0 and unstable if c > 0.
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Proof. The critical points associated with the system
(5.10) is P : (0, 0).The eigenvalues associate to the
Jacobian matrix DF (0, 0) are, λ1 = λ2 = 0. Ac­
cording to the Theorem ([7, pág 116]), let v = f(u)
a solution of v + A(u, v) = 0, where v = f(u) =
−cu3 + . . . approximation of the Taylor series solu­
tion, furthermore B(u, v) = −dv2

2 + 3
2buv

2 + cu2v,
then F (u) = −c2u5 + . . . y G(u) = cu2 + . . ., so
m = 5,n = 2,b = 4c y a = −c2. Therefore the ori­
gin in the infinite plane is an stable node if c < 0 and
is a unstable node if c > 0.

6 Global Phase Portrait
In this section We show the global nophase portrait
associate to each family:

(a) Family I. (b) Family II.

(a) Family III. (b) Family IV.

(a) Family V, b < 0. (b) Family V, b > 0.

7 Algebraic Aspects
In this section we follow the references [1, 9, 10, 11].
According to [10, pag. 46], explicit solutions for dif­

ferential equation

d2x

dt2
= f(x) (7.1)

are related with the integral curve (x, ẋ) of the one
degree of freedom Hamiltonian system

ẋ = y, ẏ = f(x), H =
y2

2
−
∫ x

x0

f(τ)dτ (7.2)

Theorem 7.1. Consider the family I, The following
statements hold.
1. The dynamical system is hamiltonian with one

degree of freedom and with polynomial first in­
tegral H = H(x, y) = y2

2 + c
3x

3

2. The integral curve of the Hamiltomian vector
field is

(−6

c
℘(t+ k0; 0,−2H),−6

c
℘̇(t+ k0; 0,−2H)).

3. The Differential Galois Group associated to the
foliation is isomorphic to Z2.

4. The connected identity component of the Differ­
ential Galois Group of the first variational equa­
tion along any particular solution is an abelian
group.

Proof. We proceed according to each item,
1. The polynomial vector field related with family

I is equivalent to Equation (7.1) being f(x) =
−cx2. In virtue of Equation (7.2) we have the
Hamiltonian H = y2

2 + c
3x

3.

2. Due to y = ẋ, we obtain y2 = −2c
3

2
+

H . Through the change of variable (x, y) 7→
( 3

√
−6
c x,

3

√
−6
c y), we arrive to the elliptic curve

related with Wierstrass P­function with invari­
ants g2 = 0 and g3 = −2H . Thus, the integral
curve of the Hamiltonian system is (x, ẋ), being
x given by −6

c℘(t+ k0; 0,−2H).

3. The foliation associated to the vector field of
Family I is

y′ = −cx
2

y
, ′ :=

d

dx
.

Setting z = y2

2 , we obtain z
′ = −cx2 and there­

fore z = − c
3x

3. Due to the differential fieldK is
the field of rational functionsC(x), σ(z) = z and
σ(y) = λ

√
z, where λ2 = 1. Thus, the Picard­

Vessiot extensionL is a quadratic extension ofK
and we can conclude that DGal(L/K) has two
elements.
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4. Let (x0(t), ẋ0(t)) be a particular solution of the
polynomial vector field related with Family I.
Thus, the first variational equation is

d

dt

(
ξ1
ξ2

)
=

(
0 1

−2cx0(t) 0

)(
ξ1
ξ2

)
,

which is equivalent to ξ̈ = −2cx0(t)ξ, being
ξ = ξ1. By Morales­Ramis theory, due to the
dynamical system is polynomially integrable, the
differential Galois group of this first variational
equation is abelian.

Theorem 7.2. Consider the family II, The following
statements hold.
1. The first integral of the polynomial vector field is

I = I(x, y) = y − bx2

2. The integral curve of the polynomial vector field
is (x(t), ẋ(t)), where

x(t) =

√
k1
b
tan(

√
k1b(k2 + t)).

3. The Differential Galois Group associated to the
foliation is isomorphic to the identity group.

4. The connected identity component of the Differ­
ential Galois Group of the first variational equa­
tion around any particular solution is an abelian
group.

Proof. We proceed according to each item,

1. The total derivative of I(x, y) vanishes, i.e., İ =
0, therefore I is a first integral of the vector field
related to family II.

2. Due to y = ẋ, we obtain ẍ = bż, where z = x2.
Thus, ẋ = bx2 + k1, which implies that∫

dx

bx2 + k1
= t+ k2

and then x(t) =
√

k1

b tan(
√
k1b(k2 + t))..

3. The foliation associated to the vector field of
Family II is

y′ = 2bx, ′ :=
d

dx
.

Then the solution of this foliation is

y(x) = bx2 + k1

. Then we can conclude that DGal(L/K) has
one element, i.e., DGal(L/K) = I2.

4. Let (x0(t), ẋ0(t)) be a particular solution of the
polynomial vector field related with Family II.
Thus, the first variational equation is

d

dt

(
ξ1
ξ2

)
=

(
0 1

−2by0(t) 2bx0(t)

)(
ξ1
ξ2

)
,

which is equivalent to

ξ̈ − 2bx0(t)ξ̇ − 2by0(t)ξ = 0, ξ = ξ1.

Due to the first integral is of polynomial type,
by Morales­Ramis theory we can conclude that
the connected identity component of the differen­
tial Galois group of the first variational equation
along any particular solution is an abelian group.

Theorem 7.3. Consider the family III, The following
statements hold.

1. The first integral of the polynomial vector field is

I = I(x, y) = y − ax2

2. The integral curve of the polynomial vector field
is (x(t), ẋ(t)), where

x(t) =

√
k1
a
tan(

√
k1a(k2 + t)).

3. The Differential Galois Group associated to the
foliation is isomorphic to the identity group.

4. The connected identity component of the Differ­
ential Galois Group of the first variational equa­
tion around any particular solution is an abelian
group.

Proof. We proceed according to each item,

1. The total derivative of I(x, y) vanishes, i.e., İ =
0, therefore I is a first integral of the vector field
related to family III.

2. Due to y = ẋ, we obtain ẍ = aż, where z = x2.
Thus, ẋ = ax2 + k1, which implies that∫

dx

ax2 + k1
= t+ k2

and then x(t) =
√

k1

a tan(
√
ak1(k2 + t))..

3. The foliation associated to the vector field of
Family II is

y′ = 2ax, ′ :=
d

dx
.
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Then the solution of this foliation is

y(x) = ax2 + k1

. Then we can conclude that DGal(L/K) has
one element, i.e., DGal(L/K) = I2.

4. Let (x0(t), ẋ0(t)) be a particular solution of the
polynomial vector field related with Family III.
Thus, the first variational equation is

d

dt

(
ξ1
ξ2

)
=

(
0 1

−2ay0(t) 2ax0(t)

)(
ξ1
ξ2

)
,

which is equivalent to

ξ̈ − 2ax0(t)ξ̇ − 2ay0(t)ξ = 0, ξ = ξ1.

Due to the first integral is of polynomial type,
by Morales­Ramis theory we can conclude that
the connected identity component of the differen­
tial Galois group of the first variational equation
along any particular solution is an abelian group.

Theorem 7.4. Consider the family IV, being p = −4.
The following statements hold.

1. The dynamical system is hamiltonian with one
degree of freedom and with polynomial first in­
tegral H = H(x, y) = y2

2 + c
3x

3 + 3
4a

2x2

2. The integral curve of the Hamiltomian vector
field is given in terms of P­function.

3. The Differential Galois Group associated to the
foliation is isomorphic to Z2.

4. The connected identity component of the Differ­
ential Galois Group of the first variational equa­
tion along any particular solution is an abelian
group.

Proof. We proceed according to each item,

1. The polynomial vector field related with family
IV is equivalent to Equation (7.1) being f(x) =
−cx2− 3

2a
2x. In virtue of Equation (7.2) we have

the Hamiltonian H = y2

2 + c
3x

3 + 3
4a

2x2.

2. Due to y = ẋ, we obtain y2 = −2c
3

2 − 3
2a

2x +
2H . Because previous expression is a cubic
polynomial in x, we can do a suitable change of
variable to arrive to the elliptic curve related to
Weirstrass P­function with invariants g2 and g3.
Thus, the integral curve of the Hamiltonian sys­
tem is written in terms of P­function.

3. The foliation associated to the vector field of
Family IV is

y′ = −
cx2 − 3

2a
2x

y
, ′ :=

d

dx
.

Setting z = y2

2 , we obtain z
′ = −cx2 − 3

2a
2x

and therefore z = − c
3x

3 − 3
4a

2x2. Due to the
differential field K is the field of rational func­
tions C(x), σ(z) = z and σ(y) = λ

√
z, where

λ2 = 1. Thus, the Picard­Vessiot extension L is
a quadratic extension of K and we can conclude
that DGal(L/K) has two elements.

4. Let (x0(t), ẋ0(t)) be a particular solution of the
polynomial vector field related with Family IV.
Thus, the first variational equation is

d

dt

(
ξ1
ξ2

)
=

(
0 1

−3
2a

2 − 2cx0(t) 0

)(
ξ1
ξ2

)
,

which is equivalent to ξ̈ = (−3
2a

2 − 2cx0(t))ξ,
being ξ = ξ1. By Morales­Ramis theory, due to
the dynamical system is polynomially integrable,
the differential Galois group of this first varia­
tional equation is abelian.

Theorem 7.5. Consider the family V, being s = −4.
The following statements hold.
1. The dynamical system is hamiltonian with one

degree of freedom and with polynomial first in­
tegral H = H(x, y) = y2

2 + c
3x

3 + 3
4bx

2

2. The integral curve of the Hamiltomian vector
field is given in terms of P­function.

3. The Differential Galois Group associated to the
foliation is isomorphic to Z2.

4. The connected identity component of the Differ­
ential Galois Group of the first variational equa­
tion along any particular solution is an abelian
group.

Proof. We proceed according to each item,
1. The polynomial vector field related with family

V is equivalent to Equation (7.1) being f(x) =
−cx2− 3

2bx. In virtue of Equation (7.2) we have
the Hamiltonian H = y2

2 + c
3x

3 + 3
4bx

2.

2. Due to y = ẋ, we obtain y2 = −2c
3

2− 3
2bx+2H .

Because previous expression is a cubic polyno­
mial in x, we can do a suitable change of variable
to arrive to the elliptic curve related to Veirstrass
P­function with invariants g2 and g3. Thus, the
integral curve of the Hamiltonian system is writ­
ten in terms of P­function.
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3. The foliation associated to the vector field of
Family V is y′ = − cx2− 3

2
bx

y , ′ := d
dx . Setting

z = y2

2 , we obtain z
′ = −cx2− 3

2bx and therefore
z = − c

3x
3− 3

4bx
2. Due to the differential fieldK

is the field of rational functions C(x), σ(z) = z
and σ(y) = λ

√
z, where λ2 = 1. Thus, the

Picard­Vessiot extension L is a quadratic exten­
sion ofK and we can conclude thatDGal(L/K)
has two elements.

4. Let (x0(t), ẋ0(t)) be a particular solution of the
polynomial vector field related with Family V.
Thus, the first variational equation is

d

dt

(
ξ1
ξ2

)
=

(
0 1

−3
2b− 2cx0(t) 0

)(
ξ1
ξ2

)
,

which is equivalent to ξ̈ = (−3
2b−2cx0(t))ξ, be­

ing ξ = ξ1. By Morales­Ramis theory, due to the
dynamical system is polynomially integrable, the
differential Galois group of this first variational
equation is abelian.

8 Conclusion
A studywas carried out on all possible quadratic cases
associated with a family of polynomial systems, such
study included the analysis of critical points, their sta­
bility, the existence of bifurcations, the existence of
Hamiltonian cases and the construction of differential
Galois groups.
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